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1. We consider a shell, subjected to a loading which increases proportion-
ally to some parameter A. We assume that the boundary conditions of the
shell admit for A = 1 a membrane state of stress. In this case, for a
large class of shells, the following picture of the change of the number
of equilibrium shapes of the shell and their properties will be typical.

There exists a certain number A, such that for A < A, there exists a
unique membrane equilibrium shape of the shell which corresponds to an
absolute minimum of the energy of the system, composed of the shell and
external forces. Further, there exists a number A, > A, such that for
Ay < A <A, the shell possesses in addition to the membrane equilibrium
shape also a bending equilibrium shape, however, the membrane equilibrium
shape of the shell will have a lower energy level than an arbitrary bend-
ing state. Further, there exists a number Aoo > hl such that for Ai <
A < Ay, the membrane equilibrium shape of the shell, even though it is
associated with a relative minimum of the energy, is accompanied by at
least one bending equilibrium shape, associated with lower energy level.
Finally, for A > X, the membrane equilibrium shape of the shell, in
general, ceases to be associated with an energy minimum.

Such a change of equilibrium shapes was factually established in a
series of investigations (see the bibliographies in [1,2]) for a spherical
and cylindrical shell on the basis of application of approximate methods.
The same finding received a strong justification for a rather large class
of shells and boundary conditions [ 3],

From what has been mentioned above, it becomes clear that even if it
were possible to completely surmount all mathematical difficulties asso-
ciated with the solution of the basic equations of the nonlinear theory
of shells, the problem could still not be considered as being solved
completely, since the degree of reality of each of the possible equilibrium
shapes of the shell for A, < A < Ago would still not be determined.
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The selection of the most real equilibrium shape of the shell must be
made, taking additional considerations into account, It is rational to
introduce as a measure of reality of a certain equilibrium shape of the
shell the probability of finding the shell in that shape.

The idea of introducing the probability considerations into stability
problems of shells was expressed by Feodos’ev [4 ] and Vol'mir [1 ]. The
introduction of probability considerations in our opinion will signific-
antly advance the solution of such important questions as:

(1) Determination of admissible loads on the shell in studying stabil-
ity, taking into account the conditions of its behavior and the irregular-
ities in its manufacture;

{(2) The determination of inaccuracies with regard to basic shell para-
meters. Of most importance in this regard the most important factor we
have in mind is the analysis of the necessary accuracy in manufacturing
the middle surface of the shell.

The development of the statistical theory of stability of shells must
in our opinion include the following itenms:

(1) Methods of statistical description of factors which determine the
random characteristics of deformation of the shell. Methods and technique
of experimental determination of statistical characteristics of indicated
factors.

(2) Methods of statistical description of parameters which characterize
the deformation of the shell, Methods and techniques of experimental de-
termination of statistical characteristics of indicated parameters.

(3) Relations between the statistical characteristics of the parameters,
which describe the deformation of the shell and the statistical character-
istics of factors which determine the accidental character of the deform-
ation of the shell.

An approximate approach to the construction of such a theory is pre-
sented below.

Let us assume that all factors which determine the accidental character
of shell bending may be subdivided into three groups:

(1) The dispersion of elastic and geometric shell properties;

(2) The dispersion of parameters characterizing the method of shell
fixing.

(3) The dispersion of external loading applied to the shell.
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Further, even though the indicated groups may contain also functional
parameters, as for example, the deviation on the shape of the middle sur-
face of the shell, deviations in the thickness of the shell, etc., we
shall still assume that the totality of factors of the first two groups
may be described by a finite number of parameters a,, ..., a,. In view of
this it is natural to assume that the probability properties of the first
two groups of factors will be given, if the law ¢la,, ..., a,) of dis-
tribution of the parameters is specified. We now assume that the para-
meters a,, ..., a, are fixed and we now write c.lown the equa_at.ions of shell
motion, subjected to a loading F(P, t) and taking energy dissipation into
account, We have

pwy —+ 29wy + D74 = Dy (Wax + fxx) + Pux (Wyy + i) —
mzmxu(wxv*{‘fxy) + Z(Ps t) (11)
4D = 2Fh (wi,, — Wy Wyy — fxx Wyy — ]Iyy Wyx + 2fxy wxy) (i 2)

In these equations p is the mass density of the shell, referred to a
unit area of the middle surface of the shell; the energy dissipation in
the shell is described by the term 2y ».. For the sake of simplicity in
the equations (1.1) and (1.2), we neglected the energy of longitudinal
motions of the shells and we assume that F(P, t) has only one component
Z(P, t). All these assumptions may be omitted at the cost of certain
complication of further calculations.

We assume that v satisfies certain homogeneous support conditions and
further

Tegty

Qe =r(s), =490 (1.3)

where r(s), g{(s) are certain functions of the arc contour length s.

We shall seek an approximate solution of the problem in the form:

w= 3 qu(t)xx (P) (1.4)
k=1

Here x, (P) is the base in the energy space of shell bending [5,6 1.
To determine g,(t) we use the method of Bubnov-Galerkin, assuming that
X; are also normal in L,. We then obtain the following system:

(1.5)
1 8U

P 2T . . 1 j—
qk+?gk_——P—ajf—k—+p—Zk(t) {(k=1,...,n), (Zk_§Z(P1i)xk(P)dp)

Here U is the potential energy of shell deformation expressed in terms
of qko



1266 I.I. Vorovich

The system (1.5) may be considered as the equations of motion of a
certain point moving in n-dimensional space of the coefficients Gur eves
9, This point moves in the force field with the potential p~! U and
under the action of accidental loadings p~! Z,(t). We shall assume below

that (1.6)
Z(P,ty=Z0W (P, t) + ZO(P,t) + ZO(P,1) (ZW(P,t) =m0.Z(P, 1))

Here Z(z)(FE t) is the fluctuation term producing accelerations of the
point of the type of Brownian motion, 2‘3)(P, t) representing the con-
tinuous random process.

We assume further that we can set with sufficient accuracy

n n
Z® (P, 1) =3 3 am xu(P)gu (1) (1.7)
k=1 1=1
Here ¢l(t) are some fixed functions of time. We shall assume that a
continuous random process is given if the law of distribution 6(a,;) of
parameters a,; is known. In accordance with (1.6) we have

Ny
Zi(t) = 2 () + Z + S aw i (1) (1.8)
1=1
The problem is now reduced to finding the law of distribution of ¢,
«ees g, in time.

To solve this problem we assume that the groups of parameters a,, ...,
a, and a;,; and the random process Z 2)(52 t) are statistically independent.
We assume further that the parameters a,, ..., Qg ) have acquired a
certain fixed value and we seek the law of distribution of q,, ..., g,
under these restrictions. For the instants of time t > p/y the distribution
law to be found may be determined from the Smolukhovskii equation [ 7]

s T

o _ 3 9 ([ev (1) n3‘ 1 %\ 9% ¢
Pl Z___\l 30, {[F‘;:m 20 (1) — !%la];l sz] f}z;;, i ) 37 (1.9}

1

In equation (1.9) the parameter 8 characterizes the dispersion of
collisions (impacts), acting upon the shell; the smaller 8, the smaller
the dispersion of impacts applied to the shell. The parameter § character-
1zes the conditions under which the shell is put into service, and must
be determined from experience.

In as much as f is a certain distribution law, equation (1.9) must be

supplemented by the following conditions valid for ¢ > 0. (1.10)
oo

1) />0, 2 S ...Q/cqu,...,dqn:i, 3) /=0 mprgti. g

— Y

=
TL‘ —_— OQ
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Furthermore, flq,, ..., q,, 0) = f*(q,, ..., q,), where f* is the law
of distribution of ¢, ..., g, initially.

Let us suppose that we were successful in finding f from (1.9), (1.10),
Obviously f will depend also on the parameters a,, ..., Gy Qi thereby,
the unconditional distribution law f° for the conditions considered will
be

o+ o
jo(QD <ors Gy t) =S EREE S f(l}’h vy Gy t, ag, a;cz)cp(ak)ﬂ(ak;)dak dakg (111)
@«
Let us investigate several important cases in which the realization of
the scheme indicated above is possible to the end and in which explicit
formulas may be obtained.

Let 2{3) < 0, and let Z(1) pe independent of time. In this case the
distribution f{g,, ..., g,) which will be approached as t + =, must be
determined from the equation

sz Kl
Z e +E X [(aq, Zm)f} 0 (1-12)
It can be easily verified that the function
1 5 2
7 exp {(-—wU +3 gkzkm) "o‘g’ﬁ'] (1.13)
k=1

J = CQS exp [("" U+ nE gx ZxV) g‘g‘] dgy...dqn

[— oo k=1

satisfies all the conditions (1.10) and the equation (1.9). The distribu-
tion (1.13) is seen to be the Gibbs distribution.

The conditionless law of distribution in accordance with (1.13) is
determined by formula
(1.14)

]
Q.- qn) = S Sf(fh, e Gny 81y ny Gn, k) 9 {ax) B (ax) dasdag
The magnitude f° may be taken as a measure of reality of a specific
equilibrium shape of the shell.

Formula (1.14) yields a sufficiently complete solution.

Let us note certain most significant features of the method of statis-
tical analysis of shell equilibrium advanced in this paper.

1. The calculation of the distribution law in accordance with the
formula (1.14) requires neither a preceding solution of the problem
of shell equilibrium under specifie¢ loading, nor the analysis of the
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number of equilibrium shapes, nor the replacement of real relations be-
tween the deflections and the external load by single-valued functions,
etec. It is only required to note the expression of the potential energy
of the system in terms of generalized coordinates. The construction of
this expression however, does not present any difficulty.

2, The analysis of the distribution law by formula (1, 14) is reduced
to quadratures. Thereby, since the expressions under the integral in
formula (1,14) are sufficiently smooth functions, these quadratures may
by evaluated numerically without any complications, even in cases in which,
for the sake of accuracy, a large number of parameters Gqr <++» g, aTE
used. In this connection, obviously, no special difficulties arise,
associated with the use of machines for the calculations by formula (1.14).

3. Formula (1.11) takes into account in principle all basic factors
which determine the accidental character of shell bending, among them
also such accidental loads as change rather rapidly with time, and
also loads which change periodically with a period comparable to the period
of variation of the shell itself, etc. This formula makes it possible
to follow up the process of probability changes in time. It is true that
to this end the solution of the corresponding boundary value problem for
equation (1.9) is required first.

However, equation (1.9) is one of those equations which are particularly
suitable for numerical evaluation,

2. Let us consider the stability of a quadratic cylindrical panel
subjected to the action of a longitudinal compressive force (Fig. 1). In
solving this problem, we assume that accidental deviations in the shape
of the middle surface and the action of accidental, rapidly varying ex-
ternal loads are taken into account.

The potential energy of the shell may be taken in the form [1 ]
(2.1)

. niEht
U= 8at :

(€ -+ 405 4 5 — B (35 U)o+ S (Sa— 8) — 5 8K%)

_ 1 _f a® k2 _ Qe
C=g5 SL=%, k=spm, S5=36+ 5z, S=im

Here a is the edge length of the square of the shell, 2h is the shell
thickness, E Young's modulus, f is the shell deflection, fy is the initial
deflection of the shell.

We shall consider a shell with a curvature parameter k = 12, In this
case the potential energy will be expressed by the formula
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U = TER (06 409 (48, — 4.36) - U2 [— 3865, + 11.85 (1 — P)I—23.41 (G, P}
P=S5/Sg (2.2)

In accordance with (1,13}, the conditional distribution law { (the
distribution law for a determined {,) is given by the relation

<

- - AERS
J T = Fe Vo, J = Se WO, = Zazng (2.3)

—
In equations (2.3) the following notation is introduced

V() = §& 4-L3(40,—4.36) + C2[— 3.86 §y + 11.85 (1 — P)] — 23.41C5,P

The conditicnless distribution law will be given by the formula
o«

FO= {160, (2.4

—C0

where ¢({;) is the law of distribution of <o

Let us determine, for example, with the aid of (2.4), the probability
of displacement { not exceeding unity in magnitude.

Obviously,

+1 +1 o
p={rod=_{ {/CLeC)dd& (2.5)

a —1 —1—00

The results of numerical calculations by the above
formulas are indicated in Figs. 1, 2, and 3, for the
case when {, is subjected to a triangular symmetric
distribution law.

P Figure 4 indicates the dependence p(D { ), where

D ¢, is the dispersion of {. The calculat1ons were made

Fig. 1. for the P = 0.5 (that is, for the case in which the

compressive force has half the upper critical value)

and for p = 1, 0.5, 0.2, 0.1, The parameter u for a
fixed shell depends on 8, the quantity which characterizes the tondition
of shell performance. The larger the §, the "quieter® are the conditions
of shell performance. As seen from Fig. 4, for sufficiently small p, that
is, for not very "quiet" conditions of shell performance, D {b has
practically no influence on p.

Figure 3 indicates the dependence p(D ¢,) for p = 1 and for different
P, It can be seen from Fig. 3 that p(D §0) has a different character for



1270 I.I, Vorovich

different P. If P < 0.544 of the lower critical number for the given case,
then an increase in DCO leads to a decrease of p. However, if P> 0.544,

I
i ) al—~ o
bk T——— ]
M=05 15 p=t
~— ' P=ps
a4t u=az 24}
F =7 az‘L Pz
g i I i L i § 2 4_—/ /=548
aoz 00 B ee 206 DG,
Fig. 2. Fig. 3. Fig. 4.

then an increase of D {0 is followed by an increase in p. This circum-
stance, which seems to be paradoxical at the first glance, is fully ex-
plicable.

In fact, a detailed analysis of the number of the equilibrium shapes
of the shell and the degree of their stability indicates, that for P> P,
(P, is the lower critical loading) and for large positive ¢, there exists
a unique equilibrium shape which corresponds to £, being located outside
the interval [-1, +1 17,

For small positive {; the shell has three equilibrium shapes, and one
of these is located within the portion [-1, +11.

However, this shape corresponds to a higher level of potential energy
of the shell as compared to the shapes which are located outside [-1, +1]¢
Therefore, even though for small positive {; there exist equilibrium
shapes within [~1, +1], they contribute but little to the increase in
the probability of realizing the inequality |{| < 1. For negative ¢, how-
ever, positive equilibrium positions also exist, which correspond to {
in the segment [-1, +1]. But for negative {, these are precisely the
forms which appear to be most stable and the larger the {,, the more
stable is the corresponding shape. Therefore, as we decrease the dis-
persion ¢, decreasing thereby the probability of occurrence of suffi-
ciently large negative Co, then the probability p may decrease,

If P < 0.544, then to each {, there corresponds a unique equilibrium
shape of the shell and the smaller the {,, the smaller the value of ¢,
corresponding to the equilibrium shape of the shell. Thereby, obviously,
by decreasing the dispersion {o the magnitude p must increase.

We also note that if D {, is decreased, concentrating the distribution
law ¢, on the negative {;, then we will always have an increase of p.
Therefore, it is natural to raise the question of introducing of techno-
logical, constructional and other types of measures, with the aid of which
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an artificial dispersion could be created, concentrating the distribution
law of ¢, on negative values.

Figure 4 indicates the dependence of p on P for different D ;. It may
be noted that the function p(P) undergoes a sharp change for those values
of the loading which are slightly higher than the lower critical number.
These values of the loading are characterized by the circumstance that
three equilibrium shapes of the shell correspond to them, and two stable
equilibrium shapes of the shell have equal levels of potential energy.

The graphs in Fig. 4 are constructed for p = 1 and consequently they
may be used only for the condition of shell performance corresponding to
¢t = 1. However, it is entirely possible to construct a series of such
graphs for different p. This would give the possibility, using a given
probability level of finding the shell in a specific state for given per-
formance conditions, of determining the allowable dispersion in the shape
of the middle surface of the shell. We turn our attention now to the
analysis of the probability of snap-through of the shell. Figure 5 indi-
cates a graph of the potential energy of the system composed of the shell
and the external forces. For a certain value of P > 0.544 the snap-through
of the shell will occur, if, as a consequence of accidental impacts, the
potential barrier { is overcome. Therefore, it may be assumed that for a
fixed ¢, the probability of snap-through p, will be given by the relation

-]

p={71C L) (2.6) v
e
Applying the theorem on total probability, we
obtain the following formula for the calculation
of snap-through probability:

Pi = Q . Go) @ (8y) dty .7

oo

&

Fig. 5.

Further, if it is considered that snap-through may occur only for {0,
which satisfies the inequality

Co <86, (P) (2.8)

where {0 is a certain number determined for each P, then formula (2.7)
may be written in the form

Loa (P) 0
o= (7GL)eC) &, (2.9)
- "

The results of calculations by formula (2.9) are given in Fig. 6. The
circumstance should be pointed out here that as, D Co increases, the
snap-through probability decreases. This is explained by the fact that
by decreasing D {, we make large values of ¢, (in magnitude) less probable
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(we recall that the distribution law was assumed to be symmetrical). But

Pr for large positive €0 snap-through does not occur,
and for large negative {, snap-through is improbable,
o5 because the state of equilibrium before snap-through
b (0, =006 is associated in this case with a lower energy level
DC,=20267 than the state after snap-through.
az- o =00067
P We note in conclusion that in employing the scheme

0005 25 1 outlined above, it is abvious that all possible
practical operating conditions of shells must be
Fig. 6. divided in accordance with the level *quietness® of
performance, and for each case to be analysed, the value of p must be de-
termined experimentally.
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