
A STATISTICAL METBOD IN THE TREORY OF 
STABILXTY OF SHELLS 

1.1. VOROVICH 

(Rostov-ne-Donu) 

1, We consider a shell 1 subjected to a loading which increases proportion- 
ally to some parameter A, We assume that the boundary conditions of the 
shell admit for X = 1 a membrsne state of stress. In this case, for a 
large class of shells, the fol~o~~g picture of the change of the number 
of equi librim shapes of the shell and their properties will be typical. 

There exists a certain number A, such that for h < A, there exists a 
unique membrane equilibrium shape of the shell which corresponds to an 
absolute rn~nirn~ of the energy of the system, composed of the shell and 
external forces. Further, there exists a number A, > A, such that for 
X, Q X < A, the shell possesses in addition to the membrane equilibrium 
shape also a bending equilibrium shape, however, the membrane equilibrium 
shape of the shell will have a lower energy level than an arbitrary bend- 
ing state. Further, there exists a number A,, >/ A, such that for A, < 

x < 4Pa the ~~~r~e e~ilibri~ shape of the shell, even tho~gb it is 
associated with a relative minims of the energy, is acc~~~e~ by at 
least one bending equilibrium shape, associated with lower energy level. 
Finally, for X > kOO the membrane equilibrium shape of the shell, in 
general , ceases to be associated with an energy minimum. 

Such a change of e~ilibri~ shapes was factually established in a 
series of investigations fsee the bibliographies in fk,21) for a spherical 
and cylindrical shell on the basis of application of approximate methods. 
The same finding received a strong justification for a rather large class 
of shells and boundary conditions [ 3 ] , 

From what has been mentioned above, it becomes clear that even if it 
were possible to completely su~~t all mathe~tic~l difficulties asso- 
ciated with the solution of the basic equations of the nonlinear theory 
of shells, the problem could still net be considered as being solved 
completely, since the degree of reality of each of the possible equilibrium 
shapes of the shell for A, < X < A,, would still not be determined. 
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Ihe selection of the most real equilibrium shape of the shell must be 
made, taking additional considerations into accost, It is rational to 
introduce as a measure of reality of a certain equilibrium shape of the 
shell the probability of finding the shell in that shape, 

The idea of introducing the probability considerations into stability 

problems of shells was expressed by Feodos’ev 14 and Vol’mir [ 1 1. The 

i~trodu~t~o~ of ~r~babi~it~ considerations in our opinion will signific- 

antly advance the solution of such important questions as: 

(1) Determination of admissible loads on the shell in studying stabil- 

ity, taking into account the conditions of its behavior and the irregular- 

ities in its manufacture: 

f2f The determination of inaccuracies with regard to basic. shell para- 

meters. Of most importance in this regard the most important factor we 

have in mind is the analysis of the necessary accuracy in manufacturing 

the middle surface of the shell. 

The d~vel5pment of the statistical theory 

in our o~i~~~n include the following items: 

of stability of shells must 

(1) Methods of statistical description of 

random characteristics of deformation of the 

of experimental determination of statistical 

factors. 

factors which determine the 

shell. Methods and technique 

characteristics of indicated 

parameters which characterize (2) Methods of’statistical description of 

the deformation of the shell. Methods and techniques of experimental de- 

termination of statistical characteristics of indicated parameters, 

(31 Relations between the statistical Ghara~ter~sti~s of the parameters* 

which describe the dsformat~on of the shell and the statistical character- 

istics of factors which determine the accidental character of the deform- 

ation of the shell. 

An approximate approach to the construction of such a theory is pre- 

sented below. 

Let us assume that all factors which determine the accidental 

of shell bending may be subdivided into three groups: 

(1) The dispersion of elastic and geometric shell properties; 

(2) Ihe dispersion of parameters characterizing the method of 

fixing. 

(3) The dispersion of external loading applied to the shell. 

character 

shell 
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Further, even though the indicated groups may foxtail also fictional 
~ar~ters~ as for example, the deviation on the shape of the middle sur- 
face of the shell, deviations in the thickness of the shell, etc”, we 
shall still assume that the totality of factors of the first two groups 
may be described by a finite number of parameters oi, . * . , a,. 16n view of 
this it is natural to assume that the probability properties of the first 
two groups of factors will be given, if the law +(al, , m.p a.) of dis- 
tribution of the par~et~~s is specified, We now assume that the para- 
meters al, . ..) a are fixed and we now write down the equations of shell 
motion, subjected=to a loading F(P, t ) and taking energy dissipation into 
account. We have 

In these equations p is the mass density of the shell, referred to a 
unit area of the middle surface of the shell; the energy dissipation in 
the shell is described by the term 2ywi. For the sake of simplicity in 
the equations (1.1) and (1.2), we neglected the energy of longitudinal 
motions of the shells and we assume that HP, t) has only one component 
Z(P, t). All these ass~tio~s may be omitted at the cost of certain 
complication of further calculations, 

We assume that 1~ satisfies certain homogeneous support conditions and 
further 

where r(s), q(s) are certain functions of the arc contour length S. 

We shall seek an approximate solution of the problem in the form: 

k--t 

Here xk (P) is the base in the energy space of shell bending [ 5,6 I , 
To determine q,(t) we use the method of Wlbnov-Galerkin, assuming that 
xk are also normal in L,, We then obtain the following system: 

Here U is the potential energy of shell deformation expressed in terms 

of 4k’ 
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The system (1.5) may be considered as the e~~~~~~~ of motion of a 
certain point moving in 
q,. This point moves in 

n-dimensional space of the coefficients ql, I.., 
the force field with the potential p-” U and 

under the action of accidental loadings p-l Z,(t). We shall assume below 
that 

(1,6) 

Here Zag, t3 tion term p~od~~~~g accelerations of the 
paint of the type of Brown&n motion, iZ( 3, (P, t) representing the con- 
tinuous random process. 

We assume further that we can set with sufficient a~~urscy 

Here rt;l (t) are some fixed functions of time. We shall assume that a 
continuous random process is given if the law of distribution @(a, r> of 
haunters Q~ I is known. In accordance with (1.G) we have 

z,(t) = &~(~)(t) + Zk@) + 5 akl (211 (t) V.@ 

I=1 

Ihe problem is now reduced to finding the law of distribution of ql, 
=.., 4, in time. 

To solve this problem we assume that the 

tm 
and akl and the random process 2 (2)(P, t) 

groups of par~eters at, I.‘) 
are statistically independent. 

e assume further that the parameters al, . ..) a ‘kl 
certain fixed value and we seek the law of distr~~~tio~ 

have acquired a 
of qiE ***, 4, 

under these restrictions. For the instants of time t > p/y the dis~ributioo 
law to be found may be determined from the Smolukhovskii equation t ? 1 

In equation (1.9) the parameter S characterizes the dispersion of 
collisions (impacts), acting upon the shell; the smaller 6, the smaller 

the dispersion of i~a~ts applied to the shell, The pa~a~ter 8 character- 
izes the cunditions under which the sheI is put into service, and must 
be determined from experience. 

In as much as f is a certain d~str~b~t~on law, ~~~~~~0~ (1.9) must be 
supplemented by the following conditions valid for t > 0. (M.O} 



Furthemre, ftq,, . ..@ Q,* 0) = f”(cfp ***)I q,)* where f* is the law 
of distribution of qiE l *.p pn initially. 

Let us suppose that we were successful in finding f from (1.91, (1.101, 
Obviously f will depend also on the parameters ai, . . . . a,, ok,; thereby, 

the unconditional distribution law fJ for the conditions considered will 
be 
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Let us investigate several i~~~t~t cases in which the realization of 
the scheme indicated above is possible to the end and in which explicit 
formulas may be obtained. 

and let A11 be ~nde~~d~t of time. In this case the 
distribution flq,, . ..) 4,) which 
detekned from the equation 

will be approached as t + oo,must be 

It can be easily verified that 

satisfies all the conditions (1.10) and the equation (1.9). 'Ihe distribu- 
tion 41.13) is seen to be the Gibbs distribution. 

Tke conditionless law of distribution in accordance with (1+13) is 

determined by formula 
(1.14) 

f"0.2 W-t%P= ~~~Sf(Q1'e.‘,4n,.1,.~~, an, akl) 9 @k) 3 (a kt) dakhkl 

-Co 

The latitude p m be taken as a measure 0 reality of a specific 
equilibrium shape of 

Formula (1.14) yields a sufficiently ccanplete solution. 

Let us note certain most si~~~f~cant features of the method of statiss- 
tical analysis of shell equilibrium advanced in this paper. 

1. The calculation of the distribution Eaw in accordance with the 
formula (X.14) requires neither a preceding s~~~tio~ of the proble 
of shell ~quilib~io~ under specific loading, nor the analysis of the 
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number of equilibrium shapes, nor the replacement of real relations be- 

tween the deflections and the external load by single-valued functions, 

etc. It is only required to note the expression of the potential energy 

of the system in terms of generalized coordinates. The construction of 

this expression however, does nat present any difficultly 

2. The analysis of the distribution law by formula II,141 is reduced 

to quadratures. Thereby, since the expressions under the integral in 

formula (1.14) are sufficiently smooth functions, these quadratures may 

by evaluated numerically without any complications, even in cases in which, 

for the sake of accuracy, a large number of parameters ql, . . . , qn are 

used. In this co~~~~tio~, obviously, no special difficulties arise, 

associated with the use of machines for the caIc~lati~ns by formula 11,141. 

3, Formula (1.11) takes into account in principle all basic factors 

which determine the accidental character of shell bending, among them 

also such accidental loads as change rather rapidly with time, and 

also loads which change periodically with a period comparable to the period 

of variation of the shell itself, etc. This formula makes it possible 

to follow up the process of ~robab~l~t~ changes in time. It is true that 

to this end the solution of the cor~es~o~d~ng boundary value problem for 

equation 11.9) is required first. 

However, equation (1.9) is one of those equations which are particularly 

suitable for numerical evaluation. 

2. Let us consider the stability of a quadratic cylindrical panel 

subjected to the action of .a longit~~nal compressive force (Fig. 1). In 

solving this problem, we assume that accidental deviations in the shape 

of the middle surface and the action of accidental, rapidly varying ex- 

ternal loads are taken into account. 

The potential energy of the shell may be taken in the form [ 1 1 

GW 

fi” - a:; 

Here Q is the edge length of the square of the shell, 2)a is the shell 
thickness, E Young’s modulus, f is the shell deflection, f. is the initial 

deflection of the shell. 

We shall consider a shell with a curvature parameter k = 12, In this 
case the potential energy will be expressed by the formula 
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In accordance tith (1.13), the conditional distribution law 6 (the 
distribution law for a determined &,) is given by the relation 

In equations (2.3) the following notation is introduced 

v(t) = c* t~3(46,-4.36) ‘r C* [-- 3.86 F, + 11.85 (1 - P)] - 23.41&P 

Ihe conditionless distribution law will e given by the formula 

where +([0) is the law of distribution of 5,. 

Let us determine, for example, with the aid of (2.41, the probability 
of displacement 5 not exceeding unity in magnitude. 

Obviously, 

‘Ihe results of numerical calculations by the above 
formulas are indicated in Figs, 1, 2, and 3, for the 
case wfien &, is subjected 
distribution law, 

Figure 4 indicates the dependence p(D &,I, where 
5. The calculations were made 
for the case in which the 

It 
D 4, is the dispersion of 

Fig. 1. for the P = 0.5 (that is, 
compressive force has half the upper critical value) 
and for p = 1, 0.5, 0.2, 0.1, e pocketer ~1 for a 

fixed shell depends on S, the quantity which characterizes the condition 
of shell performance, The larger the 6, the n quieter” are the conditions 
of shell performance. As seen from Fig. 4, for sufficiently small p, that 
is, for not very “quietm conditions of shell performance, D CO has 
practically no influence on p. 

Figure 3 indicates the dependence p(D CO 1 for p = 1 and for different 
P, It can be seen from Fig. 3 that p(L) 50) h as a different character for 
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different P. If P< 0.544 of the lower critical nor for the given case, 
then an increase in 1)5* leads to a decrease of pm Howovert if P > 0.544, 

Fig. 2, Fig. 3. Fig. 4. 

then an increase of D I& is followed by an increase in p. This circ 
stance, which seems to be paradoxical at the first glance, is fully ex- 
plicable, 

In fact, a detailed analysis of the number of the equilibrium shapes 
of the shell and the degree of their stability indicates, that for P>F, 
(PO is the lower critical loading) and for large positive CO there exi& 
a unique equilibrium shape which corresponds to 5, being located outside 
the i&ervA [ -2, + h I . - 

For small positive CO the shell has three e~i~ib~i~ shapes, and one 
of these ‘is located within the portion c-1, +f 1 e 

However, this shape corresponds to a higher level of potential energy 
of the shell as compared to the shapes which are located outside L-1, +l] : 
The re fore, even though for small positive 4, there exist equilibrium 
shapes within I-1, +l I, they contribute but little to the increase in 
the probability of realizing the inequality 1 <f < 1. For negative 5, how- 
evert positive ~~i~ib~i~ sitiuns also exist, which corre~ond to 5 
in the segment c-1, +1 I- Wit for negative &, these are precisely the 
forms which appear to be most stable and the larger the <0, the more 
stable is the corresponding shape, Therefore, as we decrease the dis- 
persion CO, decreasing thereby the probability of occurrence of suffi- 
ciently large negative to1 then the probability p may decrease. 

If P < 0.5Q4r, then to each 5 there corresponds a unique e~ilibri~ 
shape of the shell and the smal P er the (o, the smaller the value of [, 
corresponding to the equilibria shape of the shell, Thereby, obviously, 
by decreasing the dispersion 50 the magnitude p must increase. 

We also note that if D 5, is decreased, concentrating the distribution 
law C$ on the negative co, Ehen we will always have an increase of p. 
Iberefore, it is natural to raise the question of introducing of techno- 
logical, constructional and other types of measures, with the aid of which 
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an artificial dispersion could 
law of r. on negative values. 

be created, concentrating the distribution 

Figure 4 indicates the dependence of p on P for different D <,,. It may 
be noted that the function p(P) undergoes a sharp change for those values 
of the loading which are slightly higher than the lower critical nwnber. 
These values of the loading are characterized by the circumstance that 
three equilibrium shapes of the shell correspond to them, and two stable 
equilibrium shapes of the shell have equal levels of potential energy. 

Ihe graphs in Fig. 4 are constructed for p = 1 and consequently they 
may be used only for the condition of shell performance corresponding to 
~1 = 1. However, it is entirely possible to construct a series of such 
graphs for different cc. This would give the possibility, using a given 
probability level of finding the shell in a specific state for given per- 
formance conditions, of determining the allowable dispersion in the shape 
of the middle surface of the shell. We turn our attention now to the 
analysis of the probability of snap-through of the shell. Figure 5 indi- 
cates a graph of the potential energy of the system composed of the shell 
and the external forces. For a certain value of P > 0.544 the snap-through 
of the shell will occur, if, as a consequence of accidental impacts, the 
potential barrier 5, is overcome. Therefore, it may be assumed that for a 
fixed co the probability of snap-through p* will be given by the relation 

P.= j f (6 L> CK (2.6) 

Applying the ;heorem on total probability, we 
obtain the following formula for the calculation 
of snap-through probability: 

Pl. = y P, (LJ 9 (C”) d6” 
m 

Further, if it is considered 
which satisfies the inequality 

where (O is a certain number determined for each P, then formula (2.7) 
may be written in the form 

(2.7) 
Fig. 5. 

that snap-through may occur only for 5,) 

(23 

l’he results of calculations by formula (2.91 are given in Fig. 6. ‘lhe 
circumstance should be pointed out here 
snap-through probability decreases. 

that as, D (0 increases, the 
lhis is explained by the fact that 

by decreasing D c,, we make large values of [,, (in magnitude) less probable 
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(we recall that the distribution law was assumed to be symnetrical). E&t 
for large positive lo snap-through does not occur, 
and for large negative co snap-through is improbable, 
because the state of equilibrium before snap-through 
is associated in this case with a lower energy level 
than the state after snap-through. 

We note in conclusion that in employing the scheme 
outlined above, it is abvious that all possible 
practical operating conditions of shells must be 

Fig. 6. divided in accordance with the level aquietnessR of 
performance, and for each case to be analysed, the value of p must be de- 
termined experimentally. 

BIBLIOGRAPHY 

1. Vol’ mir, A. S. , Cibkic plastiki i obolochki (Elastic Plastics and 

Shells). Gostekhizdat, 1956, 

2. Mushtari, Kh.M. and Galimov. K.Z., Nelineinaiia teoriia uprugykh obo- 

lochek (Nonlinear Theory of Elastic Shells). Tatknigoizdat, 1957. 

3. Vorovich, I. I., Nekotorye voprosy ustoichivosti obolochek v bol’shom 
(Certain questions of shell stability in the large). Do&l. A&ad. 

Nauk SSSR, Vol. 122, No. 1, 1958. 

4. Fedos’ ev, V. I., Ob ustoichivosti sfericheskoi obolochki, nakhodia- 
shcheisia pod deistviem vneshnego ravnomerno raspredelennogo dav- 
leniia (On the stability of a spherical shell subjected to an ex- 
ternal uniform pressure). PMM Vol. 18, No. 1, 1954. 

5. Mikhlin, S.G.. Variatsionnye netody v nateraticheskoi fizike (Variation 

Methods in Mathematical Physics). Gostekhizdat, 1957. 

6. Vorovich, I. I., Pogreshnost’ priamykh metodov v nelineinoi teorii 
obolochek (Errors in direct methods in nonlinear theory of shells). 
Do&l. A&ad. Nauk SSSR, Vol. 122, NO. 9. 1958. 

7. Chandrasekar, S., Stokhasticheskie probleay v fizike i astronoaii 

(Stochastic Problems in Physics and Astronony). GIIL. 1947. 

Translated by G.H. 


